Domo BeastMode Que
I basically want, if an employee's attendance is marked PR PH PO PN HL HLWP HCL HEL consecutive 7 days then it should be highlighted as 1, if it is marked on the 8th day again then it should show 2 if it is marked again on the 9th day then it should give 3 and so on.
I have data like
Date | Emp ID | Attendance Status |
---|---|---|
01-05-2024 | 909750599 | PR |
01-05-2024 | 909777952 | NM |
02-05-2024 | 909750599 | PH |
02-05-2024 | 909777952 | WO |
03-05-2024 | 909750599 | PN |
03-05-2024 | 909777952 | PR |
04-05-2024 | 909750599 | PR |
04-05-2024 | 909777952 | WO |
05-05-2024 | 909750599 | PR |
05-05-2024 | 909777952 | CI |
06-05-2024 | 909750599 | PR |
06-05-2024 | 909777952 | PR |
07-05-2024 | 909750599 | PH |
07-05-2024 | 909777952 | PH |
08-05-2024 | 909750599 | PR |
08-05-2024 | 909777952 | PR |
09-05-2024 | 909750599 | PH |
09-05-2024 | 909777952 | PH |
10-05-2024 | 909750599 | PO |
10-05-2024 | 909777952 | PO |
11-05-2024 | 909750599 | PH |
11-05-2024 | 909777952 | PH |
12-05-2024 | 909750599 | PH |
12-05-2024 | 909777952 | PH |
13-05-2024 | 909750599 | WO |
13-05-2024 | 909777952 | WO |
14-05-2024 | 909750599 | PR |
14-05-2024 | 909777952 | PR |
15-05-2024 | 909750599 | PR |
15-05-2024 | 909777952 | PR |
16-05-2024 | 909750599 | PR |
16-05-2024 | 909777952 | PR |
Best Answer
-
Using SQL, we can build the table using
CREATE TABLE attendance (
attendance_date DATE,
employee_id INT,
attendance_status VARCHAR(10)
); INSERT INTO attendance (attendance_date, employee_id, attendance_status) VALUES
('2024-05-01', 909750599, 'PR'),
('2024-05-01', 909777952, 'NM'),
('2024-05-02', 909750599, 'PH'),
('2024-05-02', 909777952, 'WO'),
('2024-05-03', 909750599, 'PN'),
('2024-05-03', 909777952, 'PR'),
('2024-05-04', 909750599, 'PR'),
('2024-05-04', 909777952, 'WO'),
('2024-05-05', 909750599, 'PR'),
('2024-05-05', 909777952, 'CI'),
('2024-05-06', 909750599, 'PR'),
('2024-05-06', 909777952, 'PR'),
('2024-05-07', 909750599, 'PH'),
('2024-05-07', 909777952, 'PH'),
('2024-05-08', 909750599, 'PR'),
('2024-05-08', 909777952, 'PR'),
('2024-05-09', 909750599, 'PH'),
('2024-05-09', 909777952, 'PH'),
('2024-05-10', 909750599, 'PO'),
('2024-05-10', 909777952, 'PO'),
('2024-05-11', 909750599, 'PH'),
('2024-05-11', 909777952, 'PH'),
('2024-05-12', 909750599, 'PH'),
('2024-05-12', 909777952, 'PH'),
('2024-05-13', 909750599, 'WO'),
('2024-05-13', 909777952, 'WO'),
('2024-05-14', 909750599, 'PR'),
('2024-05-14', 909777952, 'PR'),
('2024-05-15', 909750599, 'PR'),
('2024-05-15', 909777952, 'PR'),
('2024-05-16', 909750599, 'PR'),
('2024-05-16', 909777952, 'PR');Then we can create a query the count consecutive sequences and use that to identify the indicator.
WITH ranked_data AS (
SELECT
attendance_date,
employee_id,
attendance_status,
ROW_NUMBER() OVER (PARTITION BY employee_id ORDER BY attendance_date) AS seq
FROM
attendance
WHERE
attendance_status IN ('PR', 'PH', 'PO', 'PN', 'HL', 'HLWP', 'HCL', 'HEL')
),
consecutive_days AS (
SELECT
attendance_date,
employee_id,
attendance_status,
seq,
DATEADD(DAY, -seq, attendance_date) AS grp
FROM
ranked_data
),
highlight_counts AS (
SELECT
employee_id,
attendance_date,
attendance_status,
seq,
grp,
COUNT(*) OVER (PARTITION BY employee_id, grp ORDER BY attendance_date) AS consecutive_count
FROM
consecutive_days
)
SELECT
attendance_date,
employee_id,
attendance_status,consecutive_count,
CASE
WHEN consecutive_count >= 7 THEN (consecutive_count - 1) / 7 + 1
ELSE 0
END AS highlight_indicator
FROM
highlight_counts
ORDER BY
employee_id,
attendance_date;** Was this post helpful? Click Agree or Like below. **
** Did this solve your problem? Accept it as a solution! **0
Answers
-
Using SQL, we can build the table using
CREATE TABLE attendance (
attendance_date DATE,
employee_id INT,
attendance_status VARCHAR(10)
); INSERT INTO attendance (attendance_date, employee_id, attendance_status) VALUES
('2024-05-01', 909750599, 'PR'),
('2024-05-01', 909777952, 'NM'),
('2024-05-02', 909750599, 'PH'),
('2024-05-02', 909777952, 'WO'),
('2024-05-03', 909750599, 'PN'),
('2024-05-03', 909777952, 'PR'),
('2024-05-04', 909750599, 'PR'),
('2024-05-04', 909777952, 'WO'),
('2024-05-05', 909750599, 'PR'),
('2024-05-05', 909777952, 'CI'),
('2024-05-06', 909750599, 'PR'),
('2024-05-06', 909777952, 'PR'),
('2024-05-07', 909750599, 'PH'),
('2024-05-07', 909777952, 'PH'),
('2024-05-08', 909750599, 'PR'),
('2024-05-08', 909777952, 'PR'),
('2024-05-09', 909750599, 'PH'),
('2024-05-09', 909777952, 'PH'),
('2024-05-10', 909750599, 'PO'),
('2024-05-10', 909777952, 'PO'),
('2024-05-11', 909750599, 'PH'),
('2024-05-11', 909777952, 'PH'),
('2024-05-12', 909750599, 'PH'),
('2024-05-12', 909777952, 'PH'),
('2024-05-13', 909750599, 'WO'),
('2024-05-13', 909777952, 'WO'),
('2024-05-14', 909750599, 'PR'),
('2024-05-14', 909777952, 'PR'),
('2024-05-15', 909750599, 'PR'),
('2024-05-15', 909777952, 'PR'),
('2024-05-16', 909750599, 'PR'),
('2024-05-16', 909777952, 'PR');Then we can create a query the count consecutive sequences and use that to identify the indicator.
WITH ranked_data AS (
SELECT
attendance_date,
employee_id,
attendance_status,
ROW_NUMBER() OVER (PARTITION BY employee_id ORDER BY attendance_date) AS seq
FROM
attendance
WHERE
attendance_status IN ('PR', 'PH', 'PO', 'PN', 'HL', 'HLWP', 'HCL', 'HEL')
),
consecutive_days AS (
SELECT
attendance_date,
employee_id,
attendance_status,
seq,
DATEADD(DAY, -seq, attendance_date) AS grp
FROM
ranked_data
),
highlight_counts AS (
SELECT
employee_id,
attendance_date,
attendance_status,
seq,
grp,
COUNT(*) OVER (PARTITION BY employee_id, grp ORDER BY attendance_date) AS consecutive_count
FROM
consecutive_days
)
SELECT
attendance_date,
employee_id,
attendance_status,consecutive_count,
CASE
WHEN consecutive_count >= 7 THEN (consecutive_count - 1) / 7 + 1
ELSE 0
END AS highlight_indicator
FROM
highlight_counts
ORDER BY
employee_id,
attendance_date;** Was this post helpful? Click Agree or Like below. **
** Did this solve your problem? Accept it as a solution! **0
Categories
- All Categories
- 1.8K Product Ideas
- 1.8K Ideas Exchange
- 1.6K Connect
- 1.2K Connectors
- 300 Workbench
- 6 Cloud Amplifier
- 9 Federated
- 2.9K Transform
- 102 SQL DataFlows
- 626 Datasets
- 2.2K Magic ETL
- 3.9K Visualize
- 2.5K Charting
- 754 Beast Mode
- 61 App Studio
- 41 Variables
- 693 Automate
- 178 Apps
- 456 APIs & Domo Developer
- 49 Workflows
- 10 DomoAI
- 38 Predict
- 16 Jupyter Workspaces
- 22 R & Python Tiles
- 398 Distribute
- 115 Domo Everywhere
- 276 Scheduled Reports
- 7 Software Integrations
- 130 Manage
- 127 Governance & Security
- 8 Domo Community Gallery
- 38 Product Releases
- 11 Domo University
- 5.4K Community Forums
- 40 Getting Started
- 30 Community Member Introductions
- 110 Community Announcements
- 4.8K Archive