Appending large datasets: Magic ETL vs Redshift
Hi,
I have a need to append large datasets together with Domo, (Google analytics data in Big Query).
According to the documentation when you have inputs larger than 100m rows you should use Redshift to transform the data.
I compared doing large dataset appends in Magic ETL against Redshift and they both took a similar amount of time to complete. I was wondering what is the rationale behind the recommendation to use redshift when there doesn't seem to be an improvement in performance?
Thanks
Comments
-
Are you only appending these two datasets, or are you doing more calculations? If you only want to append them, you may want to consider using DataFusion since that's specifically designed for simple joins/appends on very large datasets.
0
Categories
- All Categories
- 1.1K Product Ideas
- 1.1K Ideas Exchange
- 1.2K Connect
- 966 Connectors
- 254 Workbench
- Cloud Amplifier
- 1 Federated
- 2.4K Transform
- 75 SQL DataFlows
- 499 Datasets
- 1.8K Magic ETL
- 2.7K Visualize
- 2.2K Charting
- 360 Beast Mode
- 19 Variables
- 483 Automate
- 101 Apps
- 378 APIs & Domo Developer
- 6 Workflows
- 22 Predict
- 6 Jupyter Workspaces
- 16 R & Python Tiles
- 316 Distribute
- 64 Domo Everywhere
- 252 Scheduled Reports
- 59 Manage
- 59 Governance & Security
- 1 Product Release Questions
- 5K Community Forums
- 37 Getting Started
- 23 Community Member Introductions
- 63 Community Announcements
- 4.8K Archive